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a b s t r a c t 

The discrepancy between chronological age and the apparent age of the brain based on neuroimaging data — the brain age delta — has emerged as a reliable 

marker of brain health. With an increasing wealth of data, approaches to tackle heterogeneity in data acquisition are vital. To this end, we compiled raw structural 

magnetic resonance images into one of the largest and most diverse datasets assembled (n = 53542), and trained convolutional neural networks (CNNs) to predict 

age. We achieved state-of-the-art performance on unseen data from unknown scanners (n = 2553), and showed that higher brain age delta is associated with diabetes, 

alcohol intake and smoking. Using transfer learning, the intermediate representations learned by our model complemented and partly outperformed brain age 

delta in predicting common brain disorders. Our work shows we can achieve generalizable and biologically plausible brain age predictions using CNNs trained on 

heterogeneous datasets, and transfer them to clinical use cases. 
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Neurodevelopmental and age-related changes in the brain play

 crucial role in the etiology of complex neurological Stephan and

rayne (2009) and mental disorders ( Thapar and Riglin, 2020 ). Predic-

ive models for an individual’s age based on magnetic resonance imag-

ng (MRI) have been used to estimate normative trajectories across the

ifespan ( Cole and Franke, 2017; Cole et al., 2017; Franke et al., 2012;

010 ). Individual deviations from these trajectories, often called the

rain age delta, have been linked to brain health ( Franke and Gaser,
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019; Kaufmann et al., 2019 ), and more extreme deviations observed in

atients with schizophrenia (SCZ) ( Nenadi et al., 2017; Rokicki et al.,

021; Schnack et al., 2016 ), depression ( Han et al., 2020 ), cognitive im-

airment ( Elliott et al., 2019; Liem et al., 2017 ), dementia ( Wang et al.,

019 ), Alzheimer’s disease (AD) ( Gaser et al., 2013 ) and multiple scle-

osis (MS) ( Høgestøl et al., 2019 ), implying that such deviations could

e a feasible biological marker for various brain disorders. 

The brain age of an individual is typically estimated from brain

mages using statistical learning techniques. The first-generation mod-

ls were relatively simple, typically based on independent voxels
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o  
ranke et al. (2010) or a limited number of imaging-derived phenotypes

IDPs) reflecting brain properties such as volumetric measures of differ-

nt regions ( Smith et al., 2019 ). These models generally estimated linear

elationships, were restricted in scale, and were trained on datasets with

ens, hundreds or a few thousand participants ( Franke and Gaser, 2019 ).

n parallel with continuous computational advances the exponential

rowth of MRI data has enabled deep learning models of scale for ac-

urate brain age estimation ( Abrol et al., 2021; Cole et al., 2017 ). Deep

earning models can take minimally- or non-preprocessed 3-D images

s input - avoiding computationally demanding and hypothesis-driven

 Oquendo et al., 2012 ) choices during image processing - and model

omplex non-linear relations between voxels. One such model is the Sim-

le Fully Convolutional Network (SFCN), a novel deep Convolutional

eural Network (CNN) that won the Predictive Analysis Challenge for

rain age prediction in 2019 (PAC2019) ( Gong et al., 2021; Peng et al.,

021 ). While such deep learning approaches allow for the prediction

f brain age with unprecedented accuracy, and can potentially help us

dentify idiosyncratic regional patterns of neurodevelopment and age-

ng at the individual level ( Dinsdale et al., 2021; Hofmann et al., 2021 ),

heir complexity also comes with a risk of overfitting, namely finding

atterns in the training data which do not generalize well to new, pre-

iously unseen, participants ( Arbabshirani et al., 2017 ). 

Transfer learning, a deep learning technique widely used in other

reas of applied machine learning research, has recently gained mo-

entum in neuroimaging ( Valverde et al., 2021 ). Here, learned inter-

ediate representations can be shared between tasks, allowing a model

o be transferred to a problem or a dataset it was initially not trained

or ( Bengio, 2012 ). This approach has arguably been one of the core

evelopments underlying the practical success of deep learning in a

ange of computer vision problems ( SharifRazavian et al., 2014 ) by

sing models trained on general purpose datasets, typically ImageNet

 Russakovsky et al., 2015 ), and fine-tuning them towards a wide ar-

ay of tasks. Recent studies have shown that transfer learning yields

romising results also for brain age predictions ( Jonsson et al., 2019 )

nd clinical classifications based on MRI data ( Bashyam et al., 2020; Lu

t al., 2020 ). This exemplifies the need for robust, pretrained models

n massive multisite datasets, that can be translated to smaller clinical

amples, and, ultimately, to individual cases in a clinical setting. Mod-

lling brain age as a pre-training step has obvious advantages as age is a

ariable which is available in most current MRI datasets. Additionally,

he representations learned by the brain age models, representing partly

ndependent dimensions of age-related variance, could be of direct im-

ortance in individual level brain phenotyping. 

In the present study we trained deep neural network models for brain

ge prediction on structural MRI data from 53,542 healthy individu-

ls between 3 and 95 years of age to test their ability to generalize,

nd demonstrate the downstream applicability and biological relevance

f a properly generalizing model. We used the Simple Fully Convolu-

ional Network with a softmax output (SFCN-sm) which predicts age

s a discrete probability distribution, and compared its accuracy and

eneralizability with two proposed variants of the architecture; a re-

ression variant (SFCN-reg), directly predicting continuous age, and a

anking variant (SFCN-rank) encoding age as an ordinal vector. Brain

ge delta was computed as the difference between the predicted and

hronological age. To estimate the sensitivity and clinical relevance of

ur best model, we tested for associations between brain age delta and a

ange of clinical and biological phenotypes, and sociodemographic and

ifestyle variables, in unseen data from a population sample. To further

emonstrate the applicability of the model, we employed the pretrained

FCN-reg in a transfer learning context to predict case-control status for

D, MS, mild cognitive impairment (MCI), SCZ, mood disorders and

sychotic disorders on datasets obtained from a range of MRI scanners.

o promote transparency and reproducibility we have implemented an

asy-to-use Keras interface for all the trained models, both the brain age

nd clinical predictors, and a pipeline for preprocessing images, avail-

ble on our GitHub http://www.github.com/estenhl/pyment-public . 
2 
esults 

We compiled 21 publicly available datasets with T1-weighted MRI

cans into a large and diverse imaging dataset (total N = 53542; female

 = 27715; age range = 3-95), and trained a Simple Fully Convolutional

-dimensional CNN with 6 convolutional blocks and a softmax output

ayer (SFCN-sm, Fig. 1 b), as introduced in Peng et al ( Peng et al., 2021 ).

e then proposed two alternatives for the prediction layer of this archi-

ecture, the first based on regression (SFCN-reg) and the second based on

anking ( Chen et al., 2017 ) (SFCN-rank) (see Materials and Methods for

etails). Due to the time-consuming process of model evaluation, we re-

tricted our search to these three variants of the given architecture, and

rained a handful of versions of each variant with different hyperparam-

ter settings. To evaluate the generalization performance of the models,

e divided our data at two levels; A reference dataset ( Fig. 1 and Sup-

lementary Table 1) and an external dataset ( Fig. 2 a and Supplementary

able 2). In the reference dataset, we evaluated the performance of the

rained models on an independent test split from known scanners with

n age distribution resembling the training split. We then tested model

erformance on the external dataset compiled from different sources,

riginating from scanners unseen by the models during training with a

ivergent age distribution. 

uperior generalization performance of SFCN-reg 

We used the training and validation sets to optimize and tune the

odels, and a conjunction of the test set and the external dataset in a

nal model comparison. For each model variant we trained three ver-

ions, with different hyperparameter settings, on the training data, and

elected the best model based on the mean absolute error (MAE) on

he validation set ( Fig. 1 c and Supplementary Table 8). We then com-

ared the performances of the best version for each model variant on the

est set. In this comparison the results mirrored those of the validation

et, with SCFN-sm achieving the best result with an MAE of 2.23 years,

ollowed by SCFN-reg with 2.47 years and SCFN-rank with 2.55 years

 Fig. 2 b). Given the added complexity of including multiple datasets

rom a large range of scanners, we consider these results to be approxi-

ately on par with the MAE of 2.14 reported in the original SFCN paper

 Peng et al., 2021 ), and thus among the best performing models in the

eld He et al. (2021) . Additionally, the heterogeneous origins of the

ataset facilitate cross-site generalization, an essential property when

raining large multisite models ( Dockès et al., 2021 ). 

As a conclusive test of model generalization, we performed the same

omparison on the external dataset, containing unseen data from dif-

erent MRI scanners with an age distribution diverging from that of the

eference dataset. SCFN-reg substantially outperformed the two alter-

atives, with an MAE of 3.90 compared to 5.04 and 5.82 for SFCN-sm

nd SFCN-rank respectively ( Fig. 2 ). While the performance of all mod-

ls were lower on the external dataset, the extent of the generalization

rror was considerably different. When compared with MAEs from the

est set, the average error of SFCN-reg increased by approximately half,

hile it more than doubled in SFCN-sm and SFCN-rank (Supplemen-

ary Table 9). This difference coincides with the architectural differ-

nces between the models: Where both the SFCN-sm and SFCN-rank

sed age-bins, with an output node for each age in its prediction range,

FCN-reg had a single output predicting a single continuous number.

herefore, the predictions of the SFCN-reg reflect a simpler combina-

ion of the learned representations in the preceding layer of the model,

hich we hypothesize may be the reason for the improved generaliza-

ion performance. In the subsequent applications we use the SFCN-reg

ersion that achieved the best MAE on the external dataset. Addition-

lly, to facilitate cross-study comparisons, we have compiled a range

f performance metrics for our three models on the external dataset

n Table 1 . 

To better understand the visual patterns underlying the predictions

f the SFCN-reg we conducted two post-hoc correlational analyses. First,

http://www.github.com/estenhl/pyment-public
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Fig. 1. An overview of the dataset and models used for brain age modelling. (a) The reference dataset contains 53,542 healthy participants from 21 datasets, with 

ages ranging from 3 to 95 years. (b) We implemented three model variants for predicting brain age, all based on the contest-winning SFCN architecture ( Peng et al., 

2021 ). All models take minimally preprocessed T1-weighted MRI images as input. (c) The modelling process consisted of three steps, utilizing different parts of 

the reference data and the external dataset from previously unseen scanners. The best brain age model was applied in a phenome-wide association study, and a 

case-control comparison including several clinical conditions. 
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e examined brains in groups of participants with extreme brain age

eltas. Second, we correlated the delta with FreeSurfer-extracted imag-

ng measures. High deltas were broadly associated with a general pat-

ern of reduced cortical thickness ( Fig. 3 a and Supplementary Figure 8),

educed volumes of several subcortical areas, and increases in ventricle

ize, cerebrospinal fluid, and both white matter and non-white matter

ypointensities ( Fig. 3 b). We also correlated the delta with voxel-wise

olume and area, seeing a less pronounced pattern (Supplementary Fig-
3 
re 9). A full overview of the subcortical correlations can be seen in

upplementary Table 11. 

Observing that all the models performed worse in the external

ataset than in the test set, we performed post-hoc analyses to further

nderstand the causes underlying the generalization problems. First, we

nvestigated whether the inflated error could be explained by an addi-

ive offset, a linear multiplicative bias, or a general increase in vari-

nce. We observed that all three measures were amplified in the exter-
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Fig. 2. The two datasets used in the model 

comparison, and the predictive performance of 

the three model variants. (a) For comparing 

the models we employed two distinct datasets: 

A test set sampled from the reference dataset, 

and an external dataset. The former was drawn 

from the reference dataset using stratification, 

and as a consequence has a similar age and sex- 

distribution. The latter was compiled from a 

different subset of datasets, and thus was ac- 

quired from different scanners. The age range 

of the external dataset is somewhat narrower, 

spanning a region of 13 to 95 years, and has a 

more uniform distribution. (b) The six scatter 

plots display the predictions of a given model 

on the x-axis, against the ground truth age of 

the participants on the y-axis. The top row con- 

tains the predictions of the three model vari- 

ants on the test set, and the bottom row the 

external dataset. 

Table 1 

Predictive performance of the models. We compared the soft classifiation model 

(SFCN-sm), the regression model (SFCN-reg) and the ranking model (SFCN-rank) 

on the external dataset, originating from scanners which has not been seen by 

the models during training. Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), R and R2 are sensitive to the age range of the dataset, while nor- 

malized RMSE (nRMSE) and Relative Absolute Error (RAE) are not, facilitating 

comparisons across datasets. 

Model MAE RMSE R R 2 mRMSE RAE 

SFCN-sm 5.04 6.51 0.961 0.903 0.078 0.26 

SFCN-reg 3.90 5.11 0.975 0.940 0.061 0.20 

SFCN-rank 5.92 7.54 0.959 0.870 0.090 0.31 
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s  
al dataset when compared to the test set, and thus jointly contributed

o the increase (Supplementary Table 10). Secondly, we tried isolating

wo sources of generalization error: Differences in population, repre-

ented here by age and sex distributions, and differences in scanners and
4 
cquisition protocols. We approached this by resampling two artificial

atasets, both with participants previously unseen by the models. First,

e sampled a dataset with an “Unknown population “, with participants

rom the test set following the empirical age and sex distribution of the

xternal dataset. Secondly, we created a dataset with “Unknown scan-

ers ”, sampling participants from the external dataset while following

he distributions of the test set (see Materials and Methods for further

etails). Due to the stratification used in the initial train/validation/test

plit the latter set also directly matches the distributions of the train-

ng set. For each of these two new datasets we computed an MAE per

odel, which naturally fell between the MAEs on the test set and on the

xternal dataset. While this approach is exploratory and inherently lim-

ted to the characteristics and actual data points making up our datasets,

he results clearly indicate that the main driver of generalization error

s the unknown scanners ( Table 2 and Supplementary Figure 1) which

ad higher errors (MAE US ) than the unknown population (MAE UP ) for

ll the models. Additionally, these two sources of generalization error

eem to work additively, with their sum closely matching the full gen-
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Fig. 3. Correlation between brain age delta and 

vertex-wise and subcortical measures in imaging space. 

(a) Correlations with cortical thickness at the vertex- 

level computed by FreeSurfer, plotted on two generic 

surface hemispheres. (b) Correlations with subcortical 

volumes using the standard FreeSurfer atlas, overlayed 

over an average brain. The reported associations were 

computed as Pearson correlations in the test portion 

of UKBB, with the imaging measures derived using 

FreeSurfer’s recon-all pipeline. 

Table 2 

Results of the post-hoc generalization source analysis. We measured Mean Ab- 

solute Errors for the three model variants on the test set, drawn from the same 

distributions of scanners and ages as the training dataset, the “Unknown pop- 

ulation “ dataset (MAE UP ) and the “Unknown scanners “ dataset (MAE US ), both 

representing a single source of generalization error, and the external dataset, 

different from the training set in both regards. 

Model MAE TEST MAE UP MAE US MAE EXTERNAL 

SFCN-sm 2.23 3.48 3.84 5.04 

SFCN-reg 2.47 2.89 3.42 3.90 

SFCN-rank 2.55 3.95 4.32 5.92 
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ralization error observed in the external dataset. A final observation

as that SFCN-reg handled both sources of error best, which is further

vidence of its superior ability to generalize. 

rain age predictions associate with biological phenotypes and lifestyle 

actors 

Next, we examined the biological relevance of the model predic-

ions by correlating their deviations from chronological age with an ar-

ay of phenotypes (n = 394) in a phenome-wide association study. We

erformed this analysis in the subset of the UK Biobank (UKBB) data

hat was not used for brain age modelling or validation (n = 8066), and

ested associations with all the biological phenotypes and lifestyle vari-

bles accessible, manually divided into thirteen thematic categories for

nterpretability (Supplementary Table 7). For each phenotype we com-

uted a univariate correlation while correcting for age and sex ( Alfaro-

lmagro et al., 2021; Smith and Nichols, 2018 ), and assessed its signifi-

ance using a Bonferroni-corrected p-value threshold of 𝑝 < 1 . 26 × 10 −4 
see Materials and Methods). All continuous variables were standard-

zed, such that their effect sizes denote the impact a one standard de-

iation increase has on the brain age delta. In general, our results cor-

oborated several findings derived from previous studies using smaller

amples ( Fig. 4 a). We observed significantly higher delta in partici-

ants with high blood pressure ( 𝛽 = 0 . 41 , 𝑝 = 1 . 86 × 10 −7 ), those cur-

ently on blood pressure medication ( 𝛽 = 0 . 54 , 𝑝 = 1 . 17 × 10 −10 ), and

 positive correlation with blood pressure readings (diastolic (DBP):
5 
= 0 . 15 , 𝑝 = 2 . 53 × 10 −6 , systolic (SBP): 𝛽 = 0 . 16 , 𝑝 = 3 . 30 × 10 −6 ). The

ssociations with the largest effects indicated higher delta in patients

ith a diabetes diagnosis ( 𝛽 = 0 . 74 , 𝑝 = 2 . 25 × 10 −7 ) or diabetes-related

ye problems ( 𝛽 = 1 . 78 , 𝑝 = 4 . 59 × 10 −7 ). Among the biochemical mea-

urements, significant associations with brain age delta were found for

lood glucose levels ( 𝛽 = 0 . 23 , 𝑝 = 3 . 18 × 10 −11 ), Insulin-Like Growth

actor-1 levels ( 𝛽 = −0 . 22 , 𝑝 = 5 . 81 × 10 −11 ), glycated haemoglobin lev-

ls ( 𝛽 = 0 . 16 , 𝑝 = 7 . 97 × 10 −7 ) and mean corpuscular volume ( 𝛽 = 0 . 13 ,
 = 3 . 33 × 10 −5 ). Associations with variables we categorized as related

o diet and lifestyle were dominated by previous smoking, with a posi-

ive correlation with number of cigarettes per day (absolute pack years:

= 0 . 24 , 𝑝 = 8 . 55 × 10 −5 , pack years as proportion of age: 𝛽 = 0 . 26 , 𝑝 =
 . 41 × 10 −5 ) and age stopped smoking ( 𝛽 = 0 . 25 , 𝑝 = 7 . 59 × 10 −5 ). We

lso observed significant associations with average weekly beer and

ider intake ( 𝛽 = 0 . 21 , 𝑝 = 1 . 13 × 10 −7 ) and alcohol intake frequency

 𝛽 = 0 . 12 , 𝑝 = 1 . 09 × 10 −4 ), cereal intake ( 𝛽 = −0 . 16 , 𝑝 = 7 . 61 × 10 −7 ) and

articipation in “Other group activity “ (e.g. social activities not related

o a sports or social club, religious group or adult education, 𝛽 = −0 . 27 ,
 = 5 . 91 × 10 −5 ). Further, we observed a significant correlation with

he number of people living in the participants household ( 𝛽 = −0 . 13 ,
 = 8 . 20 × 10 −5 ) and higher deltas in those born outside the United King-

om and the Republic of Ireland (compared to the baseline group born

n England, 𝛽 = 0 . 62 , 𝑝 = 4 . 62 × 10 −6 ). An overview of all the 394 asso-

iations can be found in Supplementary Table 14. 

ransferring brain age predictions to developmental and degenerative brain 

isorders 

For six different disorders we compiled a patient cohort and a

atched control group, and calculated a brain age delta per participant

ased on the prediction from SFCN-reg (Supplementary Figure 4). In all

ontrol groups, the brain age prediction accuracy was approximately the

ame as for the full test set (MAEs = 2.91-4.05, Supplementary Figure 3).

atients with MS showed significantly higher brain age estimates than

heir matched healthy controls (brain age group mean difference Δ =
 . 42 years, 𝑝 = 1 . 71 × 10 −22 , Cohen’s 𝑑 = 0 . 87 ). A similar pattern was also

bserved for patients with AD ( Δ = 2 . 81 , 𝑝 = 4 . 20 × 10 −20 , 𝑑 = 0 . 59 ), MCI

 Δ = 2 . 13 , 𝑝 = 1 . 25 × 10 −15 , 𝑑 = 0 . 46 ) and SCZ ( Δ = 1 . 40 , 𝑝 = 4 . 29 × 10 −5 ,
 = 0 . 34 ). For the individuals with mood disorders (MOOD, see Mate-
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Fig. 4. Associations between the brain age 

delta and a wide range of phenotypes. We cor- 

related the brain age delta originating from the 

SFCN-reg with 394 phenotypic variables cate- 

gorized into thirteen thematic categories. (a) 

A Manhattan plot visualizing the significances 

of the 394 associations. A Bonferroni-corrected 

threshold revealed 19 significant associations 

with the delta. (b) Effect sizes of the signifi- 

cant associations. For binary variables the ef- 

fect size express the mean difference between 

the groups, while for continuous variables it de- 

notes the change in brain age delta associated 

with a one standard deviation increase. (c) For 

each of the thirteen categories we calculated 

the proportion of significant hits by dividing 

the number of significant hits within that cate- 

gory with the total number of variables in the 

same category. 
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ials and Methods) this difference was the smallest ( Δ = 0 . 64 , 𝑝 = . 04 ,
 = 0 . 17 ), while the difference was not significant for patients with a

ix of psychotic diagnoses (PSY) ( Δ = 0 . 74 , 𝑝 = . 15 , 𝑑 = 0 . 20 ). Both the

elative ordering of the disorders in terms of group difference, the mag-

itude of the disparities, and the observed significance resemble a pre-

ious study Kaufmann et al. (2019) using a different model based on a

maller dataset. 

To demonstrate the predictive power of our best performing pre-

rained brain age model for clinical conditions, we trained multiple bi-

ary classifiers to predict whether a participant had a diagnosis or not

 Fig. 1 c, Fig. 5 and Materials and Methods). We used logistic regres-

ion models with an 𝑙 1 -penalization for this purpose (LASSO models),
6 
ptimized via a nested cross validation procedure (Supplementary Fig-

re 5), and started with a baseline model classifying participants based

nly on age and sex. The second model included the brain age delta

riginating from the brain age prediction of SFCN-reg, and the third

odel replaced the brain age delta by 64 features encoded in the sec-

nd to last layer of the same model ( Fig. 5 b and Materials and Methods).

cross the six disorders, the baseline models achieved an area under the

eceiver operating curve (AUCs) ranging from 0.47 to 0.54, indicating

hat our matching procedure was satisfactory. Using the second set of

odels, quantifying the predictive power of the brain age deltas in Sup-

lementary Figure 4, greatly improved the prediction performance when

ompared to the corresponding baseline models for MS (AUC = 0.71 vs.
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Fig. 5. The datasets and models used for clini- 

cal predictions, and an overview over their per- 

formance. We trained binary classifiers to sep- 

arate cases and controls for multiple common 

brain disorders, using different levels of infor- 

mation from the brain age model. (a) We used a 

strict matching procedure, drawing a set of con- 

trols for each scanner-specific patient dataset 

matching its empirical age and sex distribution. 

(b) For each of the six disorders we trained 

three logistic regression models. The first used 

age and sex as predictors, the second included 

the brain age delta, and the third used internal 

features from SFCN-reg in a transfer learning 

setting. (c) For each disorder we compared the 

classifiers using AUCs. 
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.50), AD (0.69 vs. 0.51) and MCI (0.65 vs. 0.54); but to a minimal ex-

ent for SCZ (0.58 vs. 0.50), MOOD (0.55 vs. 0.52), and PSY (0.52 vs.

.47). A third set of classifiers were implemented in a strict transfer

earning context, utilizing the first part of the SFCN-reg as an encoder.

ere, we ran all images in the case-control dataset through the model up

ntil the second-to-last layer, encoding them as 64-dimensional feature

ectors. We then used these vectors as predictors in a secondary mod-

lling step, performing the regular cross-validation scheme and training

ASSO models with the vectors from the training folds as inputs (Mate-

ials and Methods). These features represent high-level, data-driven ab-
7 
tractions of the brain imaging data, and underlie the singular brain age

rediction. We refer to this variant of transfer learning as strict because

e kept the weights of the initial brain age model locked while optimiz-

ng for the new binary objective, which in turn allow us to keep treating

hese as ageing features and thus promote interpretability. While this

omplicates contextualizing the performance of our models in terms of

xisting case-control classifiers, it gives us an indication of the informa-

ion content of these learned features. This third set of models improved

D prediction substantially (AUC = 0.83), and also were notably better

or MS (0.79), MCI (0.73) and PSY (0.62), while only a marginal im-
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rovement was observed in SCZ (0.62) and MOOD (0.59). Overall, our

esults show that our brain age model can be transferred to make case-

ontrol predictions of these common clinical brain disorders. 

iscussion 

Brain maturation and ageing, and its interactions with clinical brain

isorders and conditions, are complex processes with pivotal environ-

ental and genetic contributions ( Fjell and Walhovd, 2010; Johnson,

001 ). Brain age prediction and the accompanying brain age delta has

he potential to provide intuitive and useful measures for summarizing

ndividual brain aberrations. However, technical differences between

tudies, e.g. the use of different scanners and MRI scan parameters, have

epresented challenges for the direct generalization and applicability of

rain age models based on large training sets. We assembled a large

nd diverse neuroimaging dataset to train multiple state-of-the-art deep

earning models for brain age prediction, and extensively tested their

bility to generalize, and their sensitivity to various common brain dis-

rders. Our best model, the SFCN-reg, showed superior performance on

n external dataset with differing scanners and age distributions com-

ared to that of the training set, enabling it for applications in other

atasets. We then demonstrated the relevance of the model predictions

y showing associations between the brain age delta and a range of com-

lex human traits and health outcomes in a population sample. Lastly,

e transferred the trained SFCN-reg to clinical data in a transfer learn-

ng setting, showing that both the brain age delta and the internal fea-

ures learned by the model have predictive value when differentiating

etween controls and patients with common brain disorders. 

In our experiment the SFCN-reg outperformed the other models in

erms of generalization performance. The age prediction accuracy on the

est data (MAE = 2.47) is among the best in the field ( He et al., 2021 ).

rucially, the prediction accuracy on data coming from unknown scan-

ers (MAE = 3.90) fares very favourably when compared to other studies

ttempting to transfer between datasets of similar size and complexity

 Bashyam et al., 2020; Boyle et al., 2021; He et al., 2021; Jonsson et al.,

019; Ren et al., 2019 ). Using data from different scanners, protocols

nd populations in neuroimaging comes with the problem of modelling

he effects of these appropriately ( Butler et al., 2021; Smith et al., 2019 ).

revious brain age studies have often explicitly included a scanner term

n the modelling or corrected the computed brain age for various bi-

ses ( Lange A. Marie and Cole, 2020 ). Recent approaches have tried

o address this problem directly via specific deep learning paradigms

 Dinsdale et al., 2020 ). Our results show that given sufficiently large and

eterogeneous training data, deep CNNs achieve state-of-the-art perfor-

ance for brain age predictions even when scanner effects are not ex-

licitly modelled, and more importantly that this performance translates

o scanners and protocols that are unknown to the model. This suggests

hat the representations learned by the model are dominated by age-

elated variance, not scanner-dependent artefacts, an extension of the

odel robustness shown in earlier studies ( Abrol et al., 2021 ). From

 practical point of view this suggests that our trained model may be

mployed in other applications in new datasets, without the need for

etraining or applying corrective procedures. 

Evaluating the biological relevance of the brain age predictions is es-

ential to further understand and trust these models. Therefore, we cor-

elated brain age delta obtained from the SFCN-reg with a wide range of

henotypes in a subset of the UKBB not used for model training. When

pplying a Bonferroni-corrected threshold, we found nineteen signifi-

ant hits spread across seven of our thirteen categories. Almost all of

hese have in earlier studies been found to have a relationship with age-

ng, either generally or specifically in the brain, or with brain health

nd/or cognitive function: Glucose level ( Karasik et al., 2005 ), Insulin-

ike Growth factor-1 ( Ashpole et al., 2015 ), and glycated haemoglobin

 Roth et al., 2016 ) are known to change with age, and corpuscular vol-

me has been associated with cognitive functioning ( Gamaldo et al.,

013 ). Lifestyle factors involving alcohol and smoking impact various
8 
iological and bodily ages ( Karasik et al., 2005 ), including that of the

rain ( Cole, 2020; Lange et al., 2020; Wrigglesworth et al., 2021 ). Ele-

ated blood pressure and other cardiovascular risk factors have estab-

ished associations with increased brain age ( Lange et al., 2020; Lange

. Marie et al., 2021 ), and an increase in predicted age has been ob-

erved in patients with diabetes ( Franke et al., 2013 ). These results need

o be assessed carefully due to the large sample size and relatively small

ffect sizes ( Sullivan and Feinn, 2012 ), but in sum we believe they indi-

ate that our model makes biologically meaningful predictions. Further,

ransferring the model to unseen datasets comprised of patients with dif-

erent clinical conditions and matched healthy peers revealed both high

ccuracy in terms of age prediction and higher deltas among patients

ith brain disorders, in line with previous studies ( Kaufmann et al.,

019 ). Importantly, the data in the case-control datasets were obtained

rom scanners not included in the training set, supporting that the model

eneralizes to previously unseen scanners; a highly valuable asset. 

As a further attempt to understand the SFCN-reg model we corre-

ated variance in the prediction-space with variation in imaging-space

fter standard preprocessing. Explaining the predictions of deep neural

etworks is inherently hard, and the plethora of methods for interpreta-

ion that exist are largely tailored to classification models. Additionally,

hey often rely on humanly discernable features for validations, such

s faces or clearly identifiable objects. Furthermore, in our analyses we

ere not interested in interpreting the predicted age per se, but rather

ts deviation from the chronological age of the participant, the brain

ge delta. Given these factors, we resolved to correlating the brain age

elta with standard measures derived from MRI images, such as corti-

al measures and subcortical volumes, using linear methods. The delta

as associated with surface-wide patterns of cortical thinning, as well as

olumetric decreases of multiple subcortical areas. Such atrophic trajec-

ories have been linked to the ageing brain ( Fjell et al., 2015; Walhovd

t al., 2005 ) both in healthy populations ( Fjell et al., 2009 ) and those

ith brain disorders ( Jacobsen et al., 2014; Pini et al., 2016 ). While

hese overall patterns are plausible, and provide further confidence in

ur model, methodological advances are required to precisely describe

ts inner workings. 

Compared to the all-in-one brain age delta, a single number describ-

ng the difference between apparent and chronological age, our results

howed increased predictive value for MS, AD and MCI when using

he internal representations of the SFCN-reg underlying the brain age

redictions. This supports the view that for some applications the con-

tituent components of the singular brain age delta are relevant beyond

he age prediction alone ( Smith et al., 2020 ). The innate ability of deep

eural networks to form abstractions of the brain at different spatial

esolutions throughout the layers of the model may help disentangle in-

ividual differences in neurodevelopmental and age-related processes

elated to complex disorders and traits. Furthermore, we see this result

s evidence that deep learning models trained to predict age in large

ultisite datasets constitute excellent starting points for transfer learn-

ng, which can subsequently be fine-tuned to a variety of tasks. 

There is an ongoing discussion in the field on whether brain age mod-

ls that are precise, or those that allow for sufficient variance in their

ingle-subject predictions, are the most useful in a downstream analy-

is of behavioural and clinical traits ( Bashyam et al., 2021; 2020; Hahn

t al., 2021 ). An argument for a model which allows for more variation

a ’looser’ fit) is that this would more accurately depict brain age as a

omplex process which appears differently in different individuals. One

hallenge with this approach is that the brain age delta is a residual,

nd recognizing what portion of this error comes from biological vari-

tion and what is modelling imprecision is practically unfeasible. As

ore complex models such as deep CNNs become competitive for brain

ge modelling, it becomes possible to minimize the overall model error,

ncluding the methodological portion, while still allowing the model to

ccurately represent the necessary biological variability internally. 

There are some limitations of the present study which we acknowl-

dge here. Given the computational cost of training complex deep learn-
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ng models on such a large dataset we restrained our study to a lim-

ted number of possible models, both in terms of model architectures

nd hyperparameter settings. With further increases in sample sizes and

iversity, deeper architectures may be sensible, as the risk of overfit-

ing is directly alleviated by the larger datasets. While we refer to our

ataset as diverse, most participants included in the study are of white

uropean background. However, this limitation is not specific to the

resent study, and global collaborations are needed to build models that

eneralize across cultural and genetic backgrounds ( Thompson et al.,

020 ). Relatedly, the current investigation included T1-weighted MRI

ata only. Future integration of information spanning various imaging

odalities may increase both age prediction accuracy and the sensitiv-

ty and specificity of various biological and clinical traits and conditions

 Lange A. Marie et al., 2021; Richard et al., 2018; Rokicki et al., 2021;

mith et al., 2020 ). To evaluate the clinical relevance of the brain age

odel in the context of disorders we employed transfer learning in a

trict way, by training LASSO models on top of the SFCN architecture.

his setup increases the interpretability of the transfer process as the

ower-level representations of our model used as predictors capture age-

elated features of the brain. In turn, this allows for the interpretation

hat illnesses that are predictable by the model must also rely on these

epresentations, and thus implicitly relate to age. There are multiple

teps which could have been taken instead to maximize predictability,

 natural starting point is to fine-tune the entire model ( Bashyam et al.,

020 ). Lastly, in order to reach broad adoption of these models and,

ltimately, approach clinical usability, a better understanding of the re-

ional patterns driving the prediction, their specific biological signifi-

ance and how it changes across time and contexts is needed ( Vidal-

iñeiro et al., 2021 ). 

In conclusion, we have trained multiple variants of a deep neural net-

ork to predict brain age on a large and heterogeneous sample of raw

tructural MRI data, and observed distinct differences in their ability to

eneralize to unseen samples and scanners. The predictions of our best

odel were linked to biochemical biomarkers, cardiovascular risk fac-

ors, smoking and alcohol intake, among others. Using transfer learning,

e demonstrated that clinical conditions with a neurodevelopmental or

eurodegenerative aetiology were predictable by our model, initially

rained to predict age. Jointly, these findings add to the growing litera-

ure documenting the tremendous potential of advanced techniques for

tatistical learning to decode biologically and clinically relevant infor-

ation from brain MRI scans. 

aterials and Methods 

ata 

All data sets used in the present study have been obtained from pre-

iously published studies which have been approved by their respective

nstitutional review board or relevant research ethics committee. 

eference dataset 

The reference dataset used for training the brain age models was

1-weighted MRI scans derived from 21 non-overlapping and publicly

vailable datasets (total n = 53542; female n = 27715) of healthy individ-

als, with ages ranging from 3 to 95 years ( Fig. 1 and Supplementary

able 1). The age distribution can be seen in Fig. 1 a. The younger age-

ange (3–30 years) was mainly composed of participants from multiple

ifferent datasets. Though the older age-range (40–80) also included

ultiple datasets, UKBB (obtained from the data repository under acces-

ion number 27412) accounted for most of these participants. The most

parsely populated age-ranges were in the very young (147 participants

ith age ≤ 5), very old (17 participants with age ≥ 85), and in midlife

42 participants with 35 ≤ age < 45). For each of the datasets, partici-

ants that had one or more psychiatric, neurological and/or other rele-

ant diagnoses (Supplementary Table 4), and those withdrawn from the

espective study were excluded before model training. In addition, for
9 
articipants having multiple brain scans, the baseline data were used,

uch that in the final dataset each data point represents a unique partic-

pant drawn from a normative population. 

xternal dataset 

To evaluate the generalizability of our trained brain age prediction

odel, an external dataset was collected (Supplementary Table 2). This

ataset included the IXI project (Supplementary Table 5) and healthy

ontrols from the datasets underlying the clinical data described below

total n = 2553). Importantly, the external dataset contained images gen-

rated by scanners not used in the reference dataset, and subsequently

nknown to the models during training and validation. This dataset can

e seen as having a more uniform age distribution ( Fig. 2 a), meaning

hat our test would capture whether any given model relies too heavily

n information observed in the training data. 

linical data 

The clinical data consisted of six patient cohorts diagnosed with MCI,

D, MS, SCZ, a mix of psychotic diagnoses and mood disorders, where

he latter was a combination of two cohorts with depression and bipolar

isorder ( Fig. 2 a and Supplementary Table 3). The individual cohorts

ere compiled from ADNI, AIBL, and multiple scanners at the Oslo Uni-

ersity Hospital (Supplementary Tables 5 and 6). In addition to the pa-

ients, we used healthy controls from the same scanners in the external

ataset to create matched control groups for the clinical predictions. 

uality control 

To ensure data quality, we executed a quality control (QC) pipeline,

onsisting of checking whether any of the image preprocessing steps

ailed, and a manual control via visual inspection. To take advantage

f as much data as possible this manual control was lenient, removing

amples where either a significant portion of the brain was missing, or

here the orientation of the head was dramatically off, and resulted in

ropping only 39/53581 participants in the reference dataset (0.07%)

nd 1/2554 participants in the external dataset (0.03%). 

mage preprocessing 

We first performed skull-stripping with the FreeSurfer 5.3 auto-recon

ipeline ( Sgonne et al., 2004 ) to produce a brainmask, minimizing the

mount of non-brain information in the data, then reoriented the images

o the standard FSL ( Jenkinson et al., 2012 ) orientation using fslreori-

nt2std. The resulting images were linearly registered to the MNI152

pace using FLIRT ( Jenkinson, 2001 ) with linear interpolation and the

efault 1 mm FSL template (version 6.0). We cropped away borders

f [6:173, 2:214, 0:160] voxels, in the sagittal, coronal and axial di-

ensions respectively. This cropping yielded the smallest cuboid with

arginal loss of brain-related information across the dataset, minimiz-

ng the memory footprint of the models during training. As a last pre-

rocessing step the voxel intensity values of all brain images were nor-

alized to the range [0, 1]. 

rain age models 

The state-of-the-art network architecture, the Simple Fully Convo-

utional Network (SFCN) ( Peng et al., 2021 ), was implemented as the

ackbone in all our brain age models. The SFCN architecture consists

f a VGG ( Simonyan and Zisserman, 2015 )-like structure, with five re-

eated convolutional blocks, each with a three-dimensional convolu-

ional layer with a filter size of (3, 3, 3), a batch normalization layer,

ectified linear activation function (ReLU) activation, and a max-pooling

ayer with a pooling size of (2, 2, 2) ( Fig. 1 b). The model then has a

hannel-wise convolutional layer, a last batch normalization layer and

 global average pooling layer. From this backbone we defined three

nd-to-end variants for brain age prediction: The original soft classi-

cation model (SFCN-sm), a regression variant with a single output
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ode with a linear activation (SFCN-reg) and a ranking model from

he general age-regression literature (SFCN-rank) ( Chen et al., 2017 ),

n approach which has also been successful for brain age predictions

 Xia et al., 2021 ). All the model definitions rely on a matrix 𝑋 of di-

ensions [ 𝑁, ℎ, 𝑤, 𝑑] containing MRI images as input, an N-dimensional

ector age = [ age 0 , age 1 , … , age 𝑁−1 ] containing the ground truth ages of

he participants to compute its loss, and are ultimately able to produce

n N-dimensional vector ̂age = [ ̂age 0 , ̂age 1 , … , ̂age 𝑁−1 ] with a single brain

ge prediction per participant (although this is not necessarily the direct

utput of the model). 

FCN-sm 

The soft classification variant formulates the age regression prob-

em as a multiclass classification problem, by having 𝑚 = ⌈max(age) ⌉ −
min(age) ⌋ output neurons, where ⌈⋅⌉ and ⌊⋅⌋ denote the ceiling and floor

perators respectively. It is denoted as soft because it uses a target vec-

or per participant generated by a normal distribution centered around

he ground truth age, instead of the one-hot encoding used in regular

lassification 

 𝑖 =  ( age 𝑖 , 1) . 

The predictions of the model are similarly a vector of length m with

 softmax activation 

̂ 𝑖 = [ ̂𝑦 𝑖, 0 , ̂𝑦 𝑖, 1 , … , ̂𝑦 𝑖, ( 𝑚 −1) ] , 
𝑚 −1 ∑
𝑗=0 

𝑦̂ 𝑖,𝑗 = 1 . 

The loss for a single datapoint is the Kullback-Leibler divergence

etween the two vectors 

oss 𝑖 = KL ( 𝑦 𝑖 ||𝑦̂ 𝑖 ) . 
The final age-prediction of a participant is calculated as a weighted

um of the prediction vector 

𝑔̂𝑒 𝑖 = ⌊min(age) ⌋ + 

𝑚 −1 ∑
𝑗=0 

𝑗 ̂𝑦 𝑖,𝑗 . 

FCN-reg 

The regression variant has a single output neuron predicting a single

alue 𝑦̂ 𝑖 per participant, limited to the range (min(age), max(age)) with

 bounded ReLU activation. The value of 𝑦̂ 𝑖 can be used directly as the

redicted age for a participant, ̂𝑎𝑔𝑒 𝑖 = 𝑦̂ 𝑖 . During training, the model

ptimizes the mean squared error. 

FCN-rank 

The ranking model formulates the age regression problem as a set of

inary “Is participant X older than age y? “-questions. Like the soft classifi-

ation model, the model has 𝑚 = ⌈max(age) ⌉ − ⌊min(age) ⌋ output neu-

ons, each representing one such binary question. The target vector for a

articipant is a binary vector of length 𝑚 , with a 1 in bins corresponding

o ages younger than the participants age and 0 in the rest. 

 𝑖 = [ 𝑦 𝑖, 0 , 𝑦 𝑖, 1 , … , 𝑦 𝑖, ( 𝑚 −1) ] , 𝑦 𝑖,𝑥 = 

{ 

1 ⌊min(age) ⌋ + 𝑥 ≤ age 𝑖 
0 𝑒𝑙𝑠𝑒 

} 

. 

For each participant the model predicts a vector of length m, where

ach output neuron is limited to the range [0 , 1] by a sigmoid activation

̂ 𝑖 = [ ̂𝑦 𝑖, 0 , ̂𝑦 𝑖, 1 , … , ̂𝑦 𝑖, ( 𝑚 −1) ] , ̂𝑦 𝑖,𝑥 ∈ [0 , 1] . 

The model optimizes the mean binary cross entropy across all the

utput neurons 

oss 𝑖 = − 

1 
𝑚 

𝑚 ∑
𝑗=0 

𝑦 𝑖,𝑗 log ( ̂𝑦 𝑖,𝑗 ) + (1 − 𝑦 𝑖,𝑗 ) 𝑙𝑜𝑔(1 − 𝑦̂ 𝑖,𝑗 ) . 

To calculate a predicted age for the model we sum up the number

f age bins for which the model predicts that a participant is older than
10 
he given age (it is worth noting that this limits the model to integer

redictions) 

𝑔̂𝑒 𝑖 = ⌊min(age) ⌋ + 

𝑚 ∑
𝑗=0 

1 𝑥 ≥ 0 . 5 ( ̂𝑦 𝑖,𝑗 ) . 

rain age model training and comparison 

All brain age models were trained on 2 NVIDIA V100 GPUs with

2GB memory, using the Keras Chollet (2015) interface of Tensorflow

.3 Abadi et al. (0000) ) on top of cuda 10.0. Using a batch size of 14 the

odels took approximately 1 second per step, translating into roughly

5 minutes per epoch or about 2.5 days per full training session. To

rain the brain age models, 80% (n = 42829) of the reference dataset was

sed for model building (training and validation) and 20% (n = 10713)

or testing. Among the data for model building 80% (n = 34285) and 20%

n = 8544) were used for training and validation of the models, respec-

ively ( Fig. 1 c and Supplementary Table 1). Before these splits, the data

as stratified by age and original study to ensure that all subsets had

esembling age distributions and came from multiple scanners. Given

he great computational cost of model training, determining optimal hy-

erparameter values by searching over the full configuration space for

ach model is impractical. Instead, we employed post-hoc heuristics, i.e.,

weaking the models based on previous runs. For each training run we

rained the model from scratch (with randomly initialized parameters)

or 80 epochs, optimized by vanilla stochastic gradient descent, employ-

ng an annealing, step-wise, learning rate schedule. This schedule had

hree steps, reducing the learning rate by a factor of 3 after epochs 20,

0 and 60. The initial learning rate was found independently for each

odel variant using a learning rate sweep ( Smith, 2017 ) (Supplemen-

ary Figure 7). We used mean absolute error (MAE) on the validation

plit to determine the best epoch for each run. We also report RMSE,

, R 

2 for all models in Table 1 , and to enable comparisons with other

tudies with possibly different age ranges the normalized measures nor-

alized RMSE (nRMSE) 

RMSE = 

RMSE 
max(age) − min(age) 

nd Relative Absolute Error (RAE) 

AE = 

𝑁 ∑
𝑖 =0 

|𝑦̂ 𝑖 − 𝑦 𝑖 |
𝑁 ∑
𝑖 =0 

|𝑦 𝑖 − 𝑦̄ |
The first model we trained was SFCN-sm with the hyperparameters

pecified in the original SFCN paper ( Peng et al., 2021 ). Seeing that this

odel was underfitting we relaxed the regularization for a second run

f the same model, and subsequently a third. The two hyperparame-

ers we tuned in this process were the weight decay, and the dropout

ate between the two final layers of the model. Having trained three

oft classification models, we moved on to train three regression models

nd three ranking models using these same heuristics (Supplementary

able 8). To select a candidate model for each variant we compared the

AEs on the validation split. In the final model selection, we compared

he MAEs of the candidate models for each variant on the test set and

he external dataset. 

orrelating the brain age delta with imaging measures 

To investigate the influence of different brain regions and voxel-wise

atterns on our predictions, we performed two post-hoc analyses. First,

e carried out a qualitative comparison of groups with unusually low

nd high brain age deltas, stratified by age. To minimize the impact

f scanner effects, both in prediction- and voxel-space, while retaining

arge enough groups to enable meaningful comparisons, we performed

his analysis in the test-portion of UKBB. We also executed the analysis
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ndependently for each sex, to ensure similarities within the groups. For

ach age bin 𝑏 ∈ [50 , 55 , 60 , 65 , 70 , 75] we selected 10 participants with

𝑔𝑒 = 𝑏 ± 0 . 5 with the lowest and highest brain age delta, and compared

hem with a group of participants the same age with the smallest abso-

ute delta. For each of these groups we created an average brain using

reeSurfer’s make_average_brain. The average brains are seen in Sup-

lementary Figure 8. 

Additionally, we performed a quantitative analysis correlating vari-

tion in brain age delta with structural imaging measures derived by

reeSurfer at the vertex (for cortical features) and atlas level (for sub-

ortical features). This analysis also used subjects from a single scanner

o minimize potential biases in the results. Being less reliant on a very

arge dataset, we were able to use data from the largest scanner in the

xternal dataset, the Oslo GE 750 scanner (n = 876). For each subject we

omputed cortical thickness for each vertex, and subcortical volumes,

sing FreeSurfer’s recon-all pipeline and the default FreeSurfer atlas.

or each of these measures we computed the Pearson correlation with

he brain age delta across all healthy subjects from the given scanner.

he vertex-wise and subcortical correlations are shown in Fig. 3 , Sup-

lementary Figure 9 and Supplementary Table 11. 

ost-hoc generalization analysis 

To study the causes of the differences in generalization, we designed

n experiment to isolate the underlying sources of this error. Based on

revious knowledge of the problems of new scanners, and the predic-

ions of the models at different ages ( Fig. 4 ) we specifically targeted two

ossible sources: Differences in population, represented by different dis-

ributions of age and sex, and data coming from unknown scanners. For

ach source we sampled an artificial, bootstrapped dataset based on our

xisting data. For the “Unknown population “ dataset we sampled par-

icipants from the test set (originating from the reference dataset), to

atch the empirical age and sex distribution of the external dataset.

imilarly, for the “Unknown scanners “ dataset we sampled participants

rom the external dataset (coming from scanners unknown to the model)

o match the age and sex distribution of the test set (and thus also the

raining set). The idea behind both datasets is to isolate a single source

f generalization error. For robustness, we bootstrapped each of these

wo artificial datasets 100 times and reported the mean MAE achieved

y the different models. Each sample was drawn probabilistically, with

eplacement, with the probability of drawing participant 𝑥 of age 𝑥 𝑎 
nd sex 𝑥 𝑠 from dataset source based on the age and sex distribution of

ataset target given by 

 ( 𝑥 ) = 

𝑃 𝑡𝑎𝑟𝑔𝑒𝑡 ( 𝑥 𝑎 , 𝑥 𝑠 ) 

𝑃 𝑠𝑜𝑢𝑟𝑐𝑒 ( 𝑥 𝑎 , 𝑥 𝑠 ) 

here 𝑃 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ( 𝑥 𝑎 , 𝑥 𝑠 ) denotes the proportion of participants in dataset

𝑎𝑡𝑎𝑠𝑒𝑡 with age 𝑥 𝑎 and sex 𝑥 𝑠 . In “Unknown population “, the test set

lays the role of source and the external dataset is the target, while this

s switched for “Unknown scanners “. 

henome-wide association study 

In the PheWAS we calculated the univariate correlation between the

rain age delta and 402 phenotypic variables from the UKBB, manually

ivided into thirteen thematically defined categories for interpretability

Supplementary Table 7). We performed this analysis in the UKBB por-

ion of the test split (n = 8066), and used all the variables available to us

t the time. We encoded all phenotypic variables according to the PH-

SANT ( Millard et al., 2018 ) datatypes, and removed non-informative

evels (Supplementary Table 12) based on the UKBB coding schemes.

dditionally, we re-coded the ordinal variables as categorical or contin-

ous by hand (Supplementary Table 13). Variables which were impos-

ible to model (i.e. singular or all missing values) were discarded. We

hen fitted a linear model per variable, modelling the delta as a func-

ion of the given covariate, age and sex, using the Python statsmodels
11 
PI ( Seabold and Perktold, 2010 ). All continuous variables were stan-

ardized using a z-score normalization pre-modelling, such that the re-

orted effect sizes refer to the change in brain age delta associated with

 one standard deviation increase in the given variable. For assessing the

ignificance of the associations, we computed a Bonferroni-corrected p-

alue threshold 𝑝 𝑏𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = 0 . 05∕394 = 1 . 12 × 10 −4 . 

ransfer learning to clinical samples 

In the transfer learning analysis we trained multiple binary models

o predict whether a participant had a given diagnosis or belonged to

he control group, based on various levels of information from the brain

ge model. For this purpose, we used the clinical dataset which was

reviously unseen by the model, and matched controls groups drawn

rom the external dataset used in the generalization test. 

ontrol matching 

To avoid biases in the case-control datasets we drew the subsets of

ontrols independently for each scanner in the patient dataset, matching

mpirical distributions of age and sex in the corresponding case subset.

or each disorder, for each scanner, the control group was created by

rawing 𝑛 𝑐𝑎𝑠𝑒 controls, without replacement, using the sampling proce-

ure described for the post-hoc generalization analysis. 

eature extraction 

To generate the feature vectors for each participant we used the

rained SFCN-reg model as an encoder, up until and including the global

verage-pooling layer. Running a single MRI through the model up until

his point results in a 64-dimensional vector representing the original

mage. Each of the dimensions 𝑛 = [0 , … , 63] in this space represent a

igh level feature of the brain, and each participant 𝑋 𝑖 = [ 𝑋 𝑖, 0 , … , 𝑋 𝑖, 63 ]
s encoded as a point in this space. When used as a predictor in the sub-

equent modelling phase, each of these 64 dimensions were treated as

n independent variable. 

odelling 

For each disorder we compared three different LASSO models, all

rained and evaluated using the following general procedure, but on

ifferent covariate sets. We first stratified the given dataset on disorder,

ge and sex, respectively, and split it into 5 folds. We performed an outer

ross-validation over these splits to allow us to have an out-of-sample

rediction for each participant. When training a model on the training

olds we performed an inner cross-validation to find the optimal value

f the penalty parameter 𝜆. The nested cross-validation procedure is il-

ustrated in Supplementary Figure 5. Having found 𝜆, we retrained the

odel on all the data from the four training folds. The models were im-

lemented using sklearn’s LogisticRegression Pedregosa et al. (0000) )

ith an 𝑙 1 -penalty. Having the out-of-sample predictions for all the par-

icipants allowed us to calculate and compare AUCs based on the entire

ase-control dataset for the given disorder. 

In addition to training the LASSO-model based on the brain age fea-

ures, we trained an MLP using Keras with the same inputs. We did not

ptimize hyperparameters for this model, but observed similar results

s the best LASSO models with the initial configuration (Supplemen-

ary Figure 6). The main benefit of the MLP is that it does not require

 two-step process for the clinical prediction models, first processing

he images with the encoder and then doing a prediction via a separate

PI, but can be implemented as an end-to-end binary classifier in Keras

aking MRIs as inputs, and thus are more accessible for use by others. 

ata availability 

The raw data incorporated in this work were gathered from various

esources. Material requests will need to be placed with individual prin-

ipal investigators. A detailed overview of the independent datasets, and

heir origins, is provided in Supplementary Table 5. 
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